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In addition to the usual centroid-time wave equation, a trilocal structure will
need to satisfy two relative-time wave equations. When the trilocal wave function
is expanded in tree functions, cach of the three wave equations becomes an
infinite matrix equation, but when the four auxiliary conditions (defined in
earlier articles in this series) are introduced, each wave equation reduces to a set
of 16 linear homogeneous equations in 16 unknown expansion coefficients (the
first 16 coefficients in the tree expansion). The 48 linear equations, in the 16
unknown C;, are given explicitly. Every 16-by-16 determinant, formed from any
16 of these 48 linear homogeneous equations, must vanish if the trilocal structure
is to be an acceptable solution; this requirement will be used in later calculations.

1. INTRODUCTION

The earlier articles in this set {Clapp et al., 1980, 1979, 1981la, and
1981b), which will be referred to here as I, II, 1II, and IV, introduced
notation, equations, and expansion functions for the trilocal system. The
auxiliary conditions that were introduced permitted the higher coefficients
in the infinite expansion to be replaced by linear combinations of the 16
leading coefficients.

This explicit reduction technique was applied to the expansion in terms
of “tree” functions, though a similar reduction procedure would be applica-
ble to the analogous expansion in terms of the “bow]l” functions in II
(together with the corresponding momentum-dependent bowl functions).

The initial tree function, as given in (II1.2.1), is

1= Nojoo[(+) 2P ()+(=) (V)] (1)
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where the normalization factor N, is given by
Ny=«2/4 (2)

Here the wave number « is the only adjustable parameter in the theory. It
specifies the height of the Fermi sea filling the vacuum, as discussed in
detail by Clapp (1980). As we will see, however, x also serves as the mass
unit (in wave number units) for the elementary particle mass spectrum. In
(2) k72 gives the tree function (1) the dimension of (length) ~3/2, so that its
square can have the dimension of a volume density or probability density, in
accordance with the usual interpretation of a wave function in quantum
mechanics.

The expression in brackets in (1) gives the combined 7-spin and ¢-spin
dependence of this initial tree function. This expression is antisymmetric
with respect to P,;, the interchange of the two quanta labeled 2 and 3. The
antisymmetry follows from the relationships

Py(+)" =(+)", Py*t(1) = =2k(1)
P, (_)T=_(_)Ts stzc(l):h(l)

which can be verified from the definitions of (+)" and (—)" in (I111.2.2) and
the definitions of 2(1) and ?¢(1) in (I11.2.9) and (I1.2.10).
The “radial” factor jj , is the product of two spherical Bessel functions,

(3)

Jo.o=Jo("rr)jo("pP) (4)

and is unchanged by the operator P,4, as can be seen from Figure 1 of III.
This operator leaves the vector r unchanged while reversing the vector p.
The magnitudes r and p are accordingly unaltered by P,;, and since only the
magnitudes enter into (4) it is clear that ji, o is unchanged.

The tree function (1), like all the other tree functions in the trilocal
expansion, singles out one of the three quanta (quantum 1) for special
treatment. However, the tree function ¢, can be converted to a fully
antisymmetric function @, through averaging over cyclic permutations:

P1=(1/3)(1+ Pip3 + Py3) 9 (5)

where P),; and P, are the two possible cyclic permutations of three
objects. It is easily verified that @, is antisymmetric to any one of the three
pair exchanges, P),, P,;, and Pi;.

For most of the analytic work, we will be using the not-fully-antisym-
metric functions such as ¢,, with the understanding that eventually these
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will be replaced by the fully antisymmetric functions such as @,. A few of
the expansion functions will need special treatment. These are functions ;
which are nonvanishing at the central point,

r=p=0 (6)

but which have a spin dependence which leads to the vanishing of the fully
antisymmetric function ; constructed as in (5), at the central point (6).
There are only a few such functions, and they do not belong as part of a
well-behaved trilocal structure. Accordingly, for these few functions the
corresponding coefficients C; should vanish, and requiring that they vanish
is part of the specification of a valid trilocal structure. This requirement can
be thought of as an inner boundary condition, complementing the outer
boundary condition which has been given in (1.2.11).

A valid trilocal structure should also satisfy the centroid-time wave
equation (I.2.8a), and two relative-time wave equations. The latter are
equivalent to (1.2.8b) and (I.2.8¢c), but will be given later in a somewhat
different form.

Each of the three wave equations can be expressed as an infinite matrix
equation relating the coefficients C, in the trilocal expansion. By the use of
the reduction equations in III and IV, each of the higher coefficients can be
written as a linear combination of the first 16, C,, G, ..., C;,. Accordingly,
each of the three infinite matrix equations reduces to 16 linear homogeneous
relationships among these first 16 coefficients.

The present paper will be directed to the construction of these 48 linear
equations.

2. CENTROID-TIME WAVE EQUATION
The centroid-time wave equation (I.2.8a) can be written in the form
0=(H,+H, , —w)d (7)
where H, and H, , are given by
H,=(1/9)(0° k=3P’ k+ o k) (8)
H, ,=(1/6ix)(20* v, —4P"0*- v, + 3P0’ v,

+20‘-V,+2P70C-Vp) (9)
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The o-spin operators are
o°’=0,+0,+0;, o°=0,—-0;, 0°=20,—0,—0, (10)

while the 7-spin operator P is defined through

Pr(+) =(=), P(=)'=(+) (11)
The wave function ® is the expansion
=Cip +Copy + - (12)
where ¢,;, @,,..., are the tree functions introduced in III and IV.

Operation by H, , upon the rest-system tree functions gives the results
assembled in Appendices B and D of I1I. Operation by H, upon the first 16
rest-system functions gives the results which appear here in Appendix A.
The momentum-dependent functions which are generated by this operator
are given in the notation used in IV.

Operation once again by H, upon the functions on the right-hand sides
of the equations in Appendix A will give further momentum-dependent
functions, together with rest-system functions including the rest-system
functions on the left-hand sides of the equations in Appendix A. The matrix
elements that are generated by these further operations are found to be
symmetric with respect to the main diagonal.

That is, the operator H,, when applied to members of the expansion
system ¢;, including rest-system functions and momentum-dependent func-
tions, can be represented by an infinite matrix which is symmetric about its
main diagonal. This means that the operator H, is Hermitian. The operator
H, , is similarly Hermitian.

The wave equation (7), when the expansion (12) is inserted and the
explicit algebraic operations are carried out, becomes a large relationship
connecting (linearly) the expansion functions @;. The terms in this equation
can be rearranged to group all terms involving ¢;, and all terms involving
@,, and so forth. These functions are all linearly independent, and are
actually all orthogonal, though this will not be proved here. As a conse-
quence, each such grouping must vanish separately. That is, the terms in the
expression which multiplies ¢, must add to zero, the terms in the expression
which multiplies ¢, must add to zero, and so on for each of the expansion
functions @;.

From the terms containing ¢,, within the expanded form of the wave
equation (7), we obtain the following relationship connecting the expansion
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coefficients C;:
0=—wC, +(x,/k)[—(62/2)C; +(1/2)Cs +(31%/2) ;]
+(k, /k)[— (6Y%/3)C, — C; +(3/%/3) G
+k[=(1/3)Co0] (13)

Furthermore, we can use (IV.133) to express C-** as a linear combination
of C;, C,, and Cy3, with coefficients involving the parameters », »’, »”, and
v, defined through (IV.8-11). After this substitution for C>-%* we find that
(13) takes the form of a linear homogeneous equation in certain of the
leading coefficients C,,...,C,s. The explicit form is given as the first
equation in Appendix B.

Similarly, from the terms containing ¢, in the expanded form of (7) we
can construct an equation which reduces to the second equation in Appen-
dix B. In this way, continuing, we can construct all 16 of the equations in
Appendix B. These equations make use of the reduction equations given
earlier in III and 1V, by which any one of the expansion coefficients in the
general tree expansion can be expressed as a linear combination of the first
16 C.

jThe 16 linear homogeneous equations in 16 unknown coefficients C;
can only be satisfied if the 16-by-16 secular determinant vanishes. The
vanishing of this determinant is one of the conditions which must be
satisfied by a valid trilocal solution.

3. RELATIVE-TIME WAVE EQUATIONS

The trilocal wave function depends upon three time variables. As
shown in (1.2.1), these can be taken as the three individual times 7, ¢,, ¢;,
associated with the three constituent quanta. However, for the description
of a composite trilocal structure it is more appropriate to use the centroid
time, T, given by

T=(y+t,+14)/3 (14)
and the two relative times, ¢, and 7,, given by
t,=02H-1,-1)/2, tp=(t2—t3) (15)

These were defined earlier in (1.2.2).
Partial differentiation with respect to the centroid time and the two
relative times is shown in (1.2.3). The Schrodinger relationship between
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d/0dT and energy is expressed, as in (1.2.10), through

1 4
CaT v (16)
This defines the dimensionless energy parameter w which appears in (7). In
analogy with (16), we can introduce the dimensionless parameters w, and w,
through

3 0 2 4 .

P - — KW, — - > —kw,P (17)

rs ;
ic atp

The specifications (17) represent new conditions which are being placed
upon the trilocal wave function. This wave function is now called upon to
be an eigenfunction of these two time-differential operators. As will be
shown below, these operators commute with the Hamiltonian for the trilocal
system, and thus can be specified independently as conserved operators.
However, as will be seen, the associated eigenvalues are not entirely inde-
pendent of other parameters.

As shown in (1.4.1), we can convert (7) into

(ikw) =140,V + T30, V; + 73,03- V; (18)
Similarly, we can use (17) to construct

(ikw,) = 27,0). V) — 730, V; ~ T3,03° V3 (19)
P7(ikw,) = 7;0,"V, = 73,0,V (20)
It can be seen by inspection that the operaiors on the right-hand sides of
(19) and (20) commute with each other and with the right-hand side of (18).

It can also be established, with the help of (1.2.11), that
w?—k?=9-(1/2)w? - (3/2)w} (21)
From (1.4.4), it is evident that the right-hand side of (21) must equal

m?, the square of the (dimensionless) mass of the trilocal structure. That is,
we must have

m?=9—(1/2)w? - (3/2)w} (22)

which is accordingly a relationship connecting certain of the parameters
characterizing a trilocal structure.
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The operator equations (19) and (20) are really eigenvalue equations
restricting the trilocal wave function ®. In place of (19) and (20) we can
write

O=(le_wr)¢ (23)
0=(H,-w,)® (24)

where H,, and H,, are given by
H,=(1/6ix)( -V,+4P%° v,—3P0" Vs
+4o"-V,—2P’0"-Vp)
+(1/9)(20°k+ 3P0’ k+206°k) (25)
H,=(1/6ix)(20*v,—60"v,— 0°V,)
+(1/9)(—20"k+ oK) (26)

The action of these operators H,, and H,, upon the first 16 expansion
functions, ¢, ¢;,..., P16, is shown in Appendices C and D. The functions
introduced by these operations include rest-system functions and functions
which are linear in the momentum vector k.

Substitution of the expansion (12) into (23), and rearrangement of
terms to collect those terms involving each of the expansion functions ¢,
leads to relations among the coefficients C;, one relation for each function.
In the first 16 of these relations, we can make substitutions which replace
the higher C, by linear combinations using the first 16 C;. What results is the
first 16 equations in Appendix E.

A similar substitution of the expansion (12) into (24) leads to relations
among the coefficients C,, which can be reduced to relations among only the
first 16 C,. These latter are included as the second 16 equations in Appen-
dix E.

Each of the 48 equations in Appendices B and E is a linear homoge-
neous equation among 16 unknown coefficients C,. For a valid solution to
exist, every 16-by-16 determinant that can be formed from any 16 rows of
this 48-by-16 matrix must vanish. This requirement severely limits the
possible solutions, as will be seen later.

Part of the limitation arises from the restriction of the eigenvalues w,
and w, to explicit forms, which will be given later. These forms satisfy (22),
but are more restrictive.
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4, DISCUSSION

In a trilocal structure, each of the constituent quanta satisfies a simple,
relativistically invariant wave equation, as given in (I.2.1). There are three
time variables that appear, one for each quantum.

When we want to look at the structure as a whole, we will use a
centroid time which we associate with the structure. This is the average of
the three individual constituent times. Differentiation with respect to this
centroid time gives the usual wave equation, analogous to the Dirac equa-
tion.

But there are then two relative-time variables which need to be in-
cluded. Differentiation with respect to these relative-time variables leads to
two relative-time wave equations which the trilocal structure needs to
satisfy.

A distributed trilocal structure cannot hope to be relativistically in-
variant unless it includes dependence upon three time variables, the centroid
time plus two relative-time variables. Each of these time dependencies has
its own wave equation.

There are accordingly three wave equations. Each of the three is here
translated into 16 linear homogeneous equations in 16 unknown coefficients
C;. The compatibility of these 48 equations requires the vanishing of a large
number of 16-by-16 determinants, and this is an important part of the
specification of a valid trilocal solution.

Other parts of the specification of a valid trilocal solution will be
examined in succeeding papers.

APPENDIX C: 16 ROWS OF THE H,, MATRIX
Hp =k[—(1/3)9%]
Hypy = k[4(2/2/9) 93 +(5/9) 9]
Hypy =k [4(6'72/27) g% +5(61/%/54) 5+
+(30'2/54) gy ¥ —4(32/27) 4]
Hpy = k[4(6'°/27) g3k +5(6/2/54) g3 ¥

+(30/2/54) @'+ * —4(3'2/27) 9]
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Hyps=K[=(37/9) "~ (6/9)91¢"*]
Hyps = k[5(31/%/27) g %% —4(3'72/27) gy &
(15 2/2T) i+ 5(67/27) ]
Hyr = k[ = (3/9) o = (6/2/9) o1 ]
Higs = K[5(3/%/27) g 1:4 —a(31/7/27) g
+4(152/27) @3 % +5(61/2/27) @Yt ]
Hy o = k[4(6V7/27) g1+ = 5(6'/2/54) gy *
+4(312/27) gy + (30'/7/54) gl
Hypro = k[(2/2/18) 93 0% + (4/9) g %% + (2/7/6) 9]
Hypyy = k[(272/18) g3 +(4/9) g0 2 +(272/6) 9]
Hpy, = k[(2172/27) g1 % + (1012 /54) gy ¢
+(8/27) gt +4(5M2/27) gkl +(22/6) iy ]
Hpys=k[—(372/9) g1 % +(6172/9) gyt *]
Hypra = k[5(377/27) gh 14 +4(32/27) gy *
~5(6"2/27) gk +4(157/27) g1,
Hypys = k[(212/18) 93+ — (2°/6) oy *
+(4/9) 934 ]
Hypyo = k[(22/18) g +(212/6) pigy

+(4/9) i ]
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APPENDIX B: THE 16-ROW REDUCED CENTROID-TIME
WAVE EQUATION

0=—wC +(x,/k)[ = (6"2/2)C; +(1/2)C; +(3/%/2) G
+(x,/k)[—(612/3)C, — C; +(3%/3) G]
+k[ - (1/3)0-»2) [ =)
+ (' =) Cy = (2/3)*Cyi]

0=—wC, +(k,/x)[ = (2/2/6)C, + (3/%/2) Cs +(1/6) ;]
+(k,/6)[(2'2/3) € +(32/3) €, = (1/3) G
+ k[4(272/9)(1- ) Y[ (w7 = v)
+(or' = 9")Cy —(2/3) 4G
+k[(5/91-»2) 7|7 - v)C,
+(mr' = 1) Gy — (2/3) 24y

0=—wGC+(x,/K)[ - (6Y%/2)C, = (21/2/6)C, — (1/3) Cy ]
+(x, /) —5(6'2/9)Cy +(30Y%/9)C,, +(1/3)Cys
—(3Y2/9)Cyy = (67%/3)pC, + (2/2/3) 5G]
+k[—4(2Y2/9)v'C, ) + k(1-»?) !
x {5(612/54)[(3/2)"*4(vCy = C))+ (' = ") G
+(3012/58)[(6/5) (= v»" +v') Cyg
+(=w'+ 1) Cpy = (3/5)"*Cys

~4(32/27)[(3/2)"*4(vCy = Gy) + (' = ") C ]}
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0=—wC, +(x,/x)[ —5(6"2/18) C, — (30'2/18) C;, — (1/2)Cy,
~(32/18)Cyy — (6"/%/2)wC, — (272 /6) v C,))
+(k, /)] —(6Y2/3)C, +(2/2/3) C, +(2/3) Cyy ]
+ k[ =42V G +k(1-»?) "
X {5(61/2/54)[(3/2)1/27(@ —vC)~ (1" =) Gy
+(3012/54)[(6/5)" (= wv'+ v") Cy

+ (=" +¥)Cpy = (3/5)*¥C

—4(372/27)[(3/2)¥(Go = vCe) — (" = ¥) Cua )
0=—wCs +(x,/x)[(1/2)C, +(3"2/2) G, +(61/2/2) Cyp |
(k,/x)[(1/3)Cy+(5"/%/3)C), — (6'/2/3)Cy5

+(22/3)Cy —vC, +(32/3)0Cy)
+ k(1/3)v'Cy + k[ = (62/9)(1-»?) 7]
x [(3/2)/*¥(#Cs = C;)+ (' = »") Oy

0=—wC, +(,/x)[(3"%/2)C, + (1/6) C, + (2/%/6) Cyo ]
+(x,/x)[ = (32/9) Cy — (15'2/9) Cy, +(2'/2/3) C 15
~(6"%/9)Cy4 +(32/3)vC, — (1/3)vC))
+k[=(5/9)7C]+k(1-»})""
x {=4(372/27)[(3/2) ¥ (v, = C)+ (' = ") G,
+4(152/27)[(6/5) (= vw" + ") Cy

+(= v+ Cy = (3/5) 770y

+5(62/27)[(3/2)"*1(vCo = Gy) + (w0 = ") Cu )
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0=—wC,+(x,/x)[—(1/2)Cy +(5Y2/2) Cy, — (6%/6) Cyy
—(22/2)Cy, +(1/2)vC, +(312/2)2Cy)
+(x,/x)[ - €, +(3%/3)C, +(6/2/3) ¢ |
+k(1/3)v"C, + k[~ (672/9)(1~»2) 7]
x [(3/2)724(Cs = vCy) = (" = ') Cy3
0=—wGCy +(k,/x)[ - (32/18) C, + (157/2/18) C,, — (21/2/2) Cy5
~(6'2/18)C,, + (3V2/2)vC, +(1/6)vC)]
+(x,/6)[(32/3)C1 = (1/3) G, = (2//3) €y
+k[=(5/9)v"C,] +k(1—»?)""
x {=4(32/21)[(3/2)*¥(C; = vCy) = ("= v) G,
+4(1512/27)[(6/5) /X (— v’ + ") Cyy
+ (=m0 + ) Cpy = (3/5)*7Cy)
+5(612/27)[(3/2) (G = vGy)— (7" = v') Cua] )
0=—wCy+(x,/x)[5(6%/12)(vC, - C,) + (3/4)(vCs — C;)
+(32/12)(vCy — Cg) +(3/%/6) 4]
+ (1, /6) [~ 5(6'2/6)(Cy — vC,) + (1/2)(Cs — vC;)
= (37/6)(Cs ~ vCy)~ (3/%/3) o]
+ k[4(3V%/9)vC, +5(6"/2/36)(— v'C, + v'C,)
+2(3V2/9)(»"Cy — v'Cy)| + k(1~»?) "
X {(6'2/18)y(Cyo + C1y)— (5%/9) y»Cy,

+(372/18) (39" =) Cys + (7'~ ) ]}
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O=

—wCyo +(k,/x)[—(1/3)C; +(612/2) Cs + (21/2/6) ]
+(x,/x)[(1/3)(3vCs — C,) +(6"/%/6)(3vCs — C;)
—(212/6)(3vCs — Gy) + (21/2)C15]

+k[(1/6)r'Cy +2(2/%/3)v'C| + k(1—»?) 7!

X {(1/18)[(»»” =¥ ) Cy + (v’ = v")C,]
+2(2Y2/9)[(wv" = ') Cg + (vv' = »") G

—(62/54)vCy +(1/3) yvCyo — (30'%/18)YCy,
—4(312/27)¥Cpy — (2Y%/6)(»»' — ") Cy5)

—wCy, +(x,/6)[(1/6)(Cy —3vC,) — (6/2/4)(Cs — 3vC;)
—(2'72/12)(Cs = 3vGy) +(272/2) Cy ]

+(k, /%)[(2/3)C, +(6V7/3)C; = (2//3) G

+ k[(1/6)9"Cy +2(22/3) v " Ce| + k(1 —»2) !

x {(1L/18)[(vw" = ¥') Cy +(wv' = ") C,]
+2(2Y2/9)[(wv"” = ') Cg + (vv' — »") G

—(6'2/54)yCy — (1/3)yvCy, +(30'/2/18)vC,
—4(3Y2/27)yCyy + (2172/6)(vv" — v') Cy}

— wCy, +(x,/x)[ ~ (3012/60)(»C; +3C, ) +3(5/2/20)(»Cs + 3C,)
+(15'2/60)(vC, +3C3) + (154/2/10) C, 5]

+(x, /x)[(302/30)(3C; + vC,) +(5'/2/10)(3C; + vC;)
—(15%2/30)(3C, + vCy) +(152/5) C¢]

+ k[ (30%/2/60)(»"'Cy + v'Cy) +2(1572/15) (v Cy + v'Cy)]
+ k(1= »2)H{(3012/90)» [ (#v" = »') C; + (v0' = »") G, ]
+4(15'2/45) v [(vv" — v') Cs + (w9 — ") G
—(5'2/45)yvCy + (3012/30) y(Cyp — Cyy)
—4(10'%/45)yvC,,

+ (151/2/30)[(””"_ »')Cys — (v’ - v") C16] }
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0=—wCp;+(x,/)[(3/4)(»C; = C,) +(612/8)(vCs — C;)
+3(2172/4)(vCy — Gy ) —3(2"/%/4) C ]
+(,/6)[(1/2)(C; = #Cy) = (6V2/2)(Cs — vC;)
+(2V2/2)(C - vCy) = (2V%/2)
+ k[(6'2/6)(— yC, +»"Cs = v'C,)]
0=—wWy+(x,/x)[(3V2/12)(vC, = C,) +3(2%/4)(vCs — C;)
+(612/12)(vC; — C) — (6"/%/12) Cy4
+ (1, /6)[ = (372/6)(Cy = vC, )+ (2/2/2)(Cs = vCy)
—(6'2/6)(Cs — vCy) +(6'2/6)
+ k[2(312/9)(v"Cy — v'Cy) +5(6"2/18)(vC, — »"'Cy + v'Cy )
+k(1—22) "1 {4(32/9)¥(Cyo + C1y ) —4(102/9) y»C,,
+2(6"2/9)[(v»" — v") Cys + (v¥' — u")‘cm] )
0=—wCs+(x,/x)[(32/6)C, — (2172 /2)vC),
+(15'2/6)Cp, —3(21/2/4) Cy5 — (6172/12) C, ]
+(x, /1) = (32/3)pCy + (2/2)(2Cyp + €y ) = (152)0Cy,
—(222/2)vCyy +(6"%/6)vC,4)
+ k[(222/12)vC, + (2/3)¥C, — (32/18)v'C,
+(2'2/3)p"'Cy — (151%/9)w'C, —2(6"/%/9)»'C ]
+k(1=v2) " H(2Y%/6) [ (39" = ') Cp — (v9' = ¥"") C, ]
+(152/18)[v (v’ — »") = (»»" — »)| C}y

+(1/6)y(»Cis— Cy6) )
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0=—wCy +(x,/x)[(32/6)vC, + (212/2)(Cyy +2Cy;)

—(15'2/2)vCy, — 3(2V%/4)vCy5 — (61/2/12) v C|
+(x, /) [~ (3%/3) Gy — (212w, + (15V%/3) Cy
= (22/2)Cp5 +(6//6) C,l]
+k[(222/12)vC, +(2/3)vCy — (3V/%/18) " C,y
—(22/3)v'Cyy + (1572/9)p"C, —2(61/%/9)v"C,]
+k(1=v2)TH(2Y2/6)[(vw" = v") Chp — v (vp' = ¥") Cyy]
+(1512/18) [ = v (o = ') + (' — ")) C},

+(1/6)v(Cys—vCi) }

APPENDIX C: 16 ROWS OF THE H, MATRIX
H, 9y = (x,/k)[ = (62/2) 93 = (1/2) s + (3/2/2) 9]

+('<p/'<)[(61/2/3)%+<P7—(3‘/2/3)<Ps]

+ k[ = (672/3) 93 %% +(1/3) 9 % +(31/2/3) g0 ¥]
H, 9, = (x,/x)[7(21/2/6) 3 +(3/2/2) s + (11/6) ]

+ (e, /0) [ = (272/3) 94 = (3/2/3) @7 + (1/3) ]

+ k[ —(22/9) ¢50k + (3/2/3) 920 % +(1/9) 4]
H, ;= (x,/k)[ = (672/2) @, +7(21/%/6) 9, = (2/3) p10]

(k,/%)[5(6"%/9) @5 = (30"2/9) @1, = (1/3) 13
+(32/9) 91 = (22/3) @17+ (6'%/9) 1]
+ k[ = (22/3) g 0% — (61/2/27) @y Ok +5(61/2/27) g 0¥

+(302/27) Gk + (1/3) @b % + (31/2/27) g 2:4]
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H,9, = (r,/6)[ - 5(6/%/9) g = (30/%/9) 91, — (1/2) 913
+7(32/18) @14 +(27/2) 911 = 7(6'72/18) 1]
+(x,/6)[(6'2/3) @1 = (2/7/3) 9, = (2/3) 1, ]
+ k[ —(2172/3) gtk — (61/2/27) g1k +5(61/2/27) @l 1 ¢
+(30172/27) % + (1/3) @y + (342/27) @33 ¢
H, 5= (k,/6)[ = (1/2) 91 + (3/%/2) 9, +(6'7/2) 910
+(x,/6)[ = (1/3) 9y = (5'2/3) @12 +(6%/3) 13
—(2%/3) 91— (32/3) 917+ (1/3) 914
+k[(372/9) @ik +(1/3) @™ * +(1/3) g+
—(517/3) g +(6'2/9) @i ¥ +(2/7/3) 4]
H,ps=(x,/%)[(3*/2) @, + (11/6) ¢, — 7(2'/?/6) qolo]
+(x,/6)[(3172/9) @5 +(15'2/9) 91, = (2'/2/3) @15
+(6'2/9) p1a + (1/3) 917~ (37/9) 1]
+ k[(1/3) g0k + (312 /27) g0 % + (31/2/27) gy Ok
~(1572/27) g + (27/3) g + (61/2/27) g ]
H, 7= (x,/x)[ = (1/2) @y +(57/2) 91, +(6'/2/6) 3
= (2%/2) 914 +(37/6) 917~ (1/2) 1]
+(x, /%) [ @1 = (37%/3) 9, ~ (6"/%/3) 11|
+k[(372/9) @1k + (1/3) g1 + (1/3) 931+

— (5/2/3) gl + (62/9) o4 + (21/%/3) gt
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H, 9y = (x,/6)[7(3%/18) 9y = 7(15'/2/18) @1, = (2/%/2) 3
~11(6'/2/18) gy — (1/2) @17 = 11(3//18) g4
+ (i, /6)[ = (372/3) @1 +(1/3) 9, + (2//3) 9]
+k[(1/3) @)1 +(32/27) 31K +(3/2/27) g3 &
—(152/20) g4+ (272/3) o + (6 27) g
H, 9y = (x,/6)[ =5(6"2/9) @y — (1/2) ; +7(3'/2/18) gy
+(3V2/3) 915 = 5(3/2/9) 919 — (2V%/4) oy
+7(62/36) @)
+ (i, /) [5(67%/9) @3 = (1/3) @5 + (3//9) 9 + (3//3) @6
+5(32/9) @yo — (21/2/6) 3 + (6'/2/18) s
+ k[ = (272/3) gk = (6172/27) gy ¢ — 5(61/2/27) @y
~(1/3) @y % = (3172/27) gy * +(30'%/27) 9, ]
H,p10=(k,/6)[ = (2/3) 93 + (6'/2/2) 95 — 7(2/%/6) ]
+(x, /)= (272) @15+ (22/3) @19 +(3/%/3) 921 = (1/3) 920]
+k[(22/9) 930 = (32/3) g 0K — (1/9) 98" + (2/7/3) 9]
H, 1= (x,/6)[(272) 915+ (27/3) 920 = (3%/2) 93 + (1/6) 924
+ (1, /6)[ = (2/3) @y = (6"72/3) 7 +(2/2/3) 5]
+k[(2172/9) @32k = (372/3) 92k — (1/9) 9§ 2 ¥ +(2V/2/3) 9l 4]
H, 912 = (x,/6)[ = (301%/9) @, + (5'/%/2) ; — 7(15/2/18)
+(15'2/5) ;5 + (1512 /45) @14 — (10'/2/20) @,, + 7(30'/2/180) g5,
+(k, /) [ = (3072/9) @3 = (5"2/3) 5 +(15"/%/9) 9 — (15V%/5) 1
+(15'2/45) @, + (102/30) @3 — (30"/2/90) 9,4]
+ k[2(2227) gyl k + (102 /27) gyt K —2(31/2/9) gk

—(1512/9) gk — (2/2T) g1k — (512 /2T) bk +(272/3) s ]
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H, 1= (5, /6)[ = (1/2) 9, +(6'2/6) 9, — (21/2/2)
=3(212/4) 915 = (2/2/4) 915+ (3'7/6) 92 = (1/2) 935
+ (/) [ = (1/3) @3 +(6'2/3) o5 ~ (272/3) @ +(21/2/2) g6
—(22/6) Py +(3'2/3) @23 = (1/3) 3]
+k[(32/9) @K+ (1/3) @b — (1/3) gyl
~ (679 = Q3 gl (5 3) i
H, o= (x,/x)[7(32/18) @, — (2/2/2) p; ~ 11(6'/2/18) g
+7(6'2/12) @15+ 7(612/36) 919 = (1/2) 9y
—11(3'2/18) ¢y,)
+(x, /6)[(372/9) 03 = (22/3) @5 +(6'2/9) @, = (6'//6) oy
+(612/18) @20 = (1/3) @23 +(372/9) o]
+k[(1/3) @t * +(3172/27) gh ok — (3/2/27) gyl 4
—(272/3) ¢y * = (6'2/27) gy — (15V2/27) i,
H,p15=(x,/x)[(3%/3) po + (15'/2/5) @y, ~ 3(2/%/4) @y,
+7(612/12) @y + (10'2/5) oy
+(k,/6)[ = (27) 910 = (15V2/15) 15 = (35'/%/5) gy
—(10'2/10) 55 + (30"/%/30) @y ]
+k[(2172/9) @3k = (22/3) gty * — (3/7/3) g

—(1/9) gliy*



Trilocal Structures 517
P16 = (,/0)[(22) g1y = (15V2/15) gy + (351/2/5) g
+3(10'/2/20) @,y — 7(302/60) g5
+(x,/6)[(37/3) @y = (15V2/5) @1, +(212/2) 915
~(6'2/6) @14 — (10'2/5) 9]
+k[(272/9) @52 K+ (22/3) @iyt — (3/2/3) it

~(1/9) ¢34

APPENDIX D: 16 ROWS OF THE H,, MATRIX
H,@,=(x,/6)[(62/6) 93 +(1/2) 5 — (3/%/6) ;]
+ (e, /)[(6'2/3) @y ~ 97— (3/2/3) 5]
+ k[ = (612/9) @30 * ~ (1,/3) @30 % +(3/2/9) g0 *]
H,py = (x,/%)[ = (272/6) 3~ (3'/%/6) ps + (1/6) ]
(k,/x) [(2‘/2)q)4—(3‘/2/3)<p7+q>8]
+k[(272/9) @30 +(31/2/9) 930 % — (1/9) g0 *]
H,opy = (x,/6)[(61/2/6) @, = (2/2/6) 9, = (1/3) 910
+(,/6)[ = (1/3) @13 = (372/3) @14 ~ (2/2/3) 911~ (61/2/3) ]
+ k[ —(2%/9) g%k + (612 /27) gh Ok — 5(6'/2/27) gy %
~(30"2/27) g + (1/9) 9" * = (37/27) @i 4]
H,py = (x,/x)[ —5(62/18) 9, — (30/2/18) @}, +(1/6) 3
= (32/18) @14 — (2'/2/6) @17+ (61/2/18) 4]
+(x,/x)[(62/3) @, +(2?) 9,
+ k[ = (272/9) @31k +(61/2/27) @51k — 5(61/2/27) g1

301/2/27 0.1, k + 1/9 qJO Lk _ 31/2/27 q)O.l,k
P10 13 14
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t p<p5

H Ip(Pé

H!p(p'l =

H tp(pB =

Clapp et al.
(k,/6)[(1/2) 91— (3/2/6) @, = (61/2/6) 1o ]
+{(x, /€)= (1/3) 05 = (57%/3) 1, — (6/%/3) 1
= (22/3)u + (32/3) @17 +(1/3) 914
+ k[ = (3%/9) @i %k +(1/9) 0k +(1/9) gh O

~ (AT~ (6/9) A9+ (279 i

= (k, /)= (3/%/6) 9, + (1/6) 9, + (21/2/6) y ]

+ (e, /6)[ = (372/3) @y = (15'/%/3) 912 = (2/7/3) 915
+(6"%/3) @1y +(1/3) @17 = (3Y%/3) 914
+k[(1/9) g0k = (372/27) @5 %k = (3/2/27) gy *
+(1512727) g * +(22/9) i+ = (61%/2T) @]
(x,/6)[(1/6) 95 = (5"2/6) @12 = (6"//6) 13
+(212/6) 14 — (3/%/6) @17 + (1/6) 1)

+(x, /1)~ 01 = (37%/3) 9, — (6'7%/3) 1]

+ k[ (372/9) @01k +(1/9) 92k +(1/9) g1
—(5172/9) @ <~ (6'2/9) @l +(2/2/9) 93]
(k,/6)[ = (32/18) @y + (15'/2/18) @y +(2'/2/6) 1

—(6'2/18) @y +(1/6) @y, = (3'/2/18) 4
+(x,/6)[ = (372/3) @1 + 9, = (272 ]
+k[(1/9) @)1 F = (32/27) @)1k — (31/2/27) g1 *

+(1512/27) @+ + (2/7/9) iyt = (617/27) 9]
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H, 5= (x,/x)[ ~5(6'/18) @, +(1/6)9; — (3%/18) p,
+(3172/6) @15 = 5(372/18) 1 +(21/2/12) gy,
—(6'2/36) 9]
+ (/1) [~ (1/3) @5 = (3172/3) s = (21/%/6) 933 — (6'/2/6) 954
+ k[ = (272/9) @itk +(61/2/27) @k +5(612/27) gyl &
—(1/9) @y * +(312/27) g% — (3012/27) iy ]
H,p10= (k. /%)[ = (1/3) ;= (61/2/6) o5 + (2/2/6) 3]
+(x, /) [(3/%/3) o1 + 9]
+ k[ = (272/9) 930 % = (3172/9) @3 K +(1/9) g2 O
—(272/3) 91|
H,o1y = (x, /6)[(27/2) 916 +(2/°/6) @20 + (3%/6) 913 — (1/6) s
+(x, /6)[ = (672/3) @7 = (2/?) 5]
+ k[ = (272/9) @37k = (372/9) @3k +(1/9) g+
= (217273) 95|
H, o1, = (x,/x)[ = (30'2/18) @, — (5'/2/6) @, + (15'//18) g
+(15Y%/10) @5 + (1572/90) 9,4 + (10/2/60) @5,
—(30'/2/180) 9y,
+ (1, /1) [ = (5"2/3) s = (15"%/3) g +(10'/%/30)
+(30'2/30) gy
+k[=2(22/27) @tk = (1012/27) @ —2(312/27) g
= (152/2T) gk + (2/27) @ + (52 /27) gl

-(@73)elt
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Hlpq)lﬁl

H

Hrp(plﬁ =

H:p‘Plﬁ =

P14 =

Clapp et al.

(k,/6)[(1/6) @y = (6'72/6) @ + (2/2/6) 95

+(22/8) y5 +(2/2/12) @15~ (3/2/6) oy +(1/6) 20]

+(k, /) = (1/3) 05 = (6'2/3) s = (2'/7/3) 9, +(212/2) 96

—(272/6) 90 = (37/3) @1y = (1/3) 9]

+ k[ (372/9) g+ (1/9) gyt~ (1/9) ¢
+(612/9) gh = (272/9) g * — (5'72/9) @3t

(s, /%) [ = (372/18) @ + (2/7/6) p — (6'/2/18) g

—(6"2/12) @15 = (62/36) 15 +(1/6) 93 = (3/2/18) oy

+(k, /6)[ = (32/3) @y — (2/2/3) o5 +(6177/3) g, + (617 /2) 9y

—(6"2/6) 90 = (1/3) 923+ (37%/3) 924]

+k[(1/9) @, = (32 2T) g+ (3227 gl

—(272/9) gy +(62/27) gy ¢ +(1512/27) gy ]

(x,/%)[(372/6) @y +(15'/2/10) @1 + (2 /4) @3

~(6"%/12) @ + (10172/10) )

+(x, /6)[ = (1012/10) g9 — (30'2/10) 3

+ k[ = (22/9) @3 + (2723) ot * — (3V7/9) pliu

+(1/9) 9354

(x, /6)[(272/2) @1, ~ (1512/30) s +(35'%/10) g

—(10"2/20) gyg + (30'/%/60) 3]

+ (1, /6)[(272/2) @13 +(61/2/2) 4]

+ k[~ (22/9) g = (22/3) gy — (3/%/9) i

+ (1/9)<p14a ]
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APPENDIX E: THE REDUCED RELATIVE-TIME WAVE
EQUATIONS

0=—wC +(x,/x)[ = (6%/2)Cs - (1/2)Cs + (3/%/2) G
+(x, /) [(6Y%/3)C, + C; = (32/3) G4
+k(1—92) " = (6Y2/3)[ (" = ¥")Cy + (w0 = ") C,]
+(1/3)[(vp" = v")Cs + (vp'— ") C4]
+(312/3)[(w" = v') Gy + (v0' — v") G4
+(2/3)vCy = (6'2/9)¥Cy3 — (2'/%/3) ¥Ca}

0=—wC, +(x, /x).[7(21/2/6)C3 +(312/2) C5 + (11/6) G|
+(x,/x)[ - (2V2/3)C, — (3%/3) C; + (1/3) Gy
+k(1=92) = (2Y29)[(»" = ») G+ (' = ") C,]
+(3V2/3)[(w0” = v') Cs + (' = »") C4]
+(1/N[(pr”" = v')Cs + (vv' = v") G
+2(3Y%/27)yCy — (21/%/3)¥Cy3 — (6"/2/27)¥C14 }

0=—wC +(x,/x)[—(62/2)C, +7(21/%/6) C, — (2/3) Cy]
+(x,/x)[(6'2/3)»C, — (212/3)»C, +5(612/9) C,
—(302/9)Cy, — (1/3)Cy5 +(312/9) C,,]
+ k[(6Y2/3)v'C + (22/9)v'C, |
+k(1-92)"H{(5/9)7(vCs — C)+(6/%/6) ¥(vC;s — C)
+(2'2/18) y(vCs — Cg) +5(6'2/27) (wv' = »"") Cy
—(2/9)(wv” = v")Cyo — (30Y%/27)(»v' = v") C}5
+(1/3)(ww’' = v")Ci3 +(32/27) (w' — ") Cyy

=~ (2'2/9)YCys}
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0=—wC, +(x,/x)[ - (6'2/2)vC, +7(2'/*/6)vC,
- 5(61/2/9) G- (301/2/9) C— (1/2) Cis
+7(32/18) C,
+ (",;/")[(61/2/3) G- (21/2/3)C2 - (2/3)C11]
+ k[(6%/3)v"C, + (2/3/9)»"C, ]|
+k(1=v2)TH{(5/9)7(C; —vC,) +(6%/6)¥(Cs — vCy)
+(21/2/18) y(Cy — vC3) = 5(6Y*/2T)(»»" = »') Cy
—(2/9)(vv'—»")Cy; ~ (302/27)(v»"” = ') Cyy
—(1/3)(vp” = v")C13 — (3Y2/27)(wp" = v') C1y — (22/9) YCi6 )

0=—wC+(x,/x)[ = (1/2)C, +(3%/2) C, +(6'/2/2) Cp ]
+(x, /6)[vC, = (372/3)vC, = (1/3) G, —~ (5//3) Cyy
+(6'%/3)C5 — (21/2/3)C14]
+k[~(Q1/3)v'C, - (323G _
+hk(1-92) 7 {(62/6)v(vCy — C) +(1/3)¥(¥Cs — C7)
+(3V2/3)y(»Cs — Cg )+ (1/3)(»v' = ¥") Gy
+(6'2/3) (v —¥") Cyo +(5'2/3) (»w' — ") Cy
+(6Y2/9)(»v’ — »") Cy3 +(212/3) (v’ — ") C14
+(32/3)YCys)

0=—wC,+(x,/k)[(3%/2)C, +(11/6)C, —7(2/%/6) Cy, ]
+(x,/x)[ = (32/3)»C, + (1/3)0C, + (312/9) G,
+(1512/9) €y, = (2172/3) €13 +(612/9) o]
+k[=(32/3)v'C, - (1/9)2'G,)
+k(1-»2) " H{(22/18)y(vCy — C)+(3/2/3) Y (vC5 ~ C;)
+(1/9)v(vG — G)+ (3V%/27) (v = ") Gy
+(2V2/9) (wp” — v') Cyo + (15Y2/27)(vv' — ") Cpy
+(2Y2/3)(wv’ — v”) Cy3 + (62%/27) (v’ — ") C14
+(1/9)Cys}
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0=—wC,+(k,/x)[—(1/2)vC, +(3V2/2)»C, - (1/2) G,
+(5'2/2) Cyy +(672/6) Cyy — (21/7/2) C,
+(x,/x)[C = (372/3)C, ~ (6'2/3) Cyy
+k[=(1/3)p"C = (3V%/3)v"C, ]|
+ k(1= 92) " {(6Y2/6)¥(C; —¥Cy)+(1/3)¥(Cs = »Cy)
+ (31/2/3)7(C6 —vCy)—(1/3)(wv" = ") Cy
+(6Y2/3) (v’ —v") Cy, + (52/3) (wv” = ') C1y
—(612/9) (v = ¥")Cy3 = (272/3) (wp" = ¥') Cy4
+(32/3)vCys}

0=—wCys+(x,/x)[(32/2)»C, +(11/6)5C,
+7(3%/18) C, — 7(15'/%/18) Cy, — (2V%/2) Cy5
—11(6'2/18) C,4]
+(x, /) = (372/3) € +(1/3)C, +(27/3) Gy
+ k[~ (3"2/3)v"C, = (1/9)v"C)
+k(1=97) " {(22/18)v( G — v Cy)
+(32/3)v(Cs = vCy) +(1/9) v (G ~ »Cy)
=(3V2/27)(wr" = ") Gy + (22/9) (v’ —¥") O
+(15Y227)(wp” = ¥') Cy, — (22 /3) (20" = v} Cy3
— (61227} (vv" = ¥") 14 +(1/9)¥Ci6}

0=—wCy+(x,/x)[5(62/6)(vCs — C;)+(3/4)(vCs — C;)
—7(32/12)(»C, — Gy )+ (3/%/3) Cy5]
+(x,/6)[5(6"2/6)(Cy = vCy) = (1/2)(Cs — vC)
+(312/6)(Cs — vCy) +(31%/3) C )

+ k[ = yC, = (3%/9)vC, —5(62/18)(v"Cy — v'C,)

= (1/2)(v"Cs = v'C;) = (3/2/18) (v Gy — v'Cy)]
+k(1-v2)"{(6'2/9)¥(Cio + Ciy) = 2(5/2/9) 17 Cyy
+(32/9)[ (v = »") Cy5 + (v9"' = »") Cy4] }
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0=—wCyo+(x, /1) —(2/3)C; +(612/2) Cs — 7(2/2/6) ]
+(x,/x)[—(1/3)(3vCy — C,)— (6Y/%/6)(3vC; — C;)
+(212/6)(3vCs — Cy)— (V%) Cy4
+k[(1/3)v'Cy = (6Y%/2)v'Cs — (2V/%/6)v'C,
+ k(1= 22) " H(1/9) (3" = ¥)Cy + (v’ = »") C,]
—(6'7%/6)[ (2" — ¥") Cs + (»v' = v") C4]
= (272/18)[ (v = v) G + (' = v") ]
—(612/27)vCy +(2/3)yvCyo — (30'/2/9)Cy,
+(1/3)YCy3 +(32/27)¥Cyy = (2'/%/3) (v»" = ") Cy5 )
0=—wCy +(k,/6)[(1/3)(C; —3vC,)— (6"/2/4)(C; — 3vC,)
+7(212/12)( Gy = 3vCy )+ (2/2) 4
+(x,/6)[=(2/3)C, — (6'2/3) C; + (2V2/3) Gy
+k[(1/3)r"C, = (6'2/2)v"C, = (2172 /6)p"Cy]
+k(1=22)"H@1/9)[ (" =) Cy + (' = ") C,]
—(6'72/6)[(v»" = v") Cs + (wv' = ") C4]
—(22/18)[(wv = ¥') Gy + (w' = »"") ]
—(6172/27)vCy = (2/3)vrCyy +(302/9)¥Cy,

+(1/3)vCy3 +(3Y2/27)¥Coy +(2172/3) (w9 = v') Cy4}
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0=—wCy, +(x,/x)[ - (30%/30)(»C, +3C,)
+3(5'2/20)(»Cs +3C,)—7(15'2/60)(vCs +3C;)
+(1512/5) C5]
+(x,/x)[ —(30/2/30)(3C, + #C, ) — (5'/2/10)(3C; + »C,)
+(152/30)(3C, + vCy) — (15'/%/5) Cy
+ k[(3012/30)(»"'Cy + »'C,) —3(512/10)(»"'C5 + ¥'C;)
—(15'2/30)(»"C, + v'Cy)]
+k(1—»2) 7 H{(30Y2/45) [ (w0 ~ »') C; + (v = ") Cy]
= (572/5)p[(w2" =) Cs + (' = ") G
—(1512/45) p[(vo" — ") Cg + (v¥' — v"') G|
—2(5'2/45) yvCy + (30*2/15)y(Cyo — C1y)
+(30'2/15) yvCy5 + (10'%/45) v Cy,
+(15'2/15)[(wp" = ") Cy5 — (v9" = »") Cy] }
0=—wC;+(x,/x)[(3/9)(»C; — C;)— (6Y2/4)(vC5 ~ C;)
+3(212/8)(vC — Cy) - 3(2/2/4) C 4
+ (6, /6)[ = (1/2)(C = vC)+(6V2/2)(C; = vCy)
—(22/2)(Cs — vCy) + (222/2) Cy)
+k[(612/6)vC, + (21%/2)YC, — (1/2)(»"Cy — v'C,)
—(6172/6)(v"Cs = v'Cy) = (2/2/2) (v Cy = ¥'Gy)]
+k(1-22) = y(Cyp + Cyy) +(3012/3) yrC,

—(22/2)[(wp" = »') Cy5 + (w9 = »") Cy4] }
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—w,Cp +(k,/6)[ - 7(3V2/12)(vC, — C,) +3(2/%/4)(»C; — C;)

+11(6Y2/12)(»Cs — G5 ) +7(6"/%/12) Cy5)

+(x, /%)[(312/6)(C; = vCy) = (2/2/2)(Cs v Cy)

+(6'2/6)(Cs — vCy)— (6"7%/6) C4

+ k[(2%/2)yC, +(6'72/18)vC, — (3'2/18)(v"Cy — v'C,)

—(24202)(»"C5 — v'C,) — (64/2/18)(»"'Cs — v'Cy )]

+k(1=22) " = (32/9)¥(Cy + Cyy) +(1012/9) yoC,

= (6172/18)[(ww" = »") Cy5 + (wv' = »") Cy ]}
0=—wCs+ (k. /K)[(377/3)Cy = (2'/2)»Cyg

+(15'%/3)C, —3(212/4) Cy5 + (612 /12) Cy)

+(x,/K)[(32/3)Cy — (2/2)(2Cy + Cyy)

+(15V2)0Cpy +(22/2)vCyy — (612/6)0C

+ k[(212/6)vC; = (3/2/2)¥Cs — (1/6)¥Cs — (3/%/9)w'C.

+2(2%/3)v"Cyo —2(15Y2/9) »'Cy, + (212 /2)¥'C)5

+(6'2/18)v'C,,)

+ k(1= »2)"H(2Y2/3)[v(w0" = »") Cyp — (w9 = ") C |

+(15'2/9)[w (v’ — ") = (v»" — »")]| Cy

+ (1/3)Y(VC15 - Clé)}
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O.—_-

—w,Cy +(x,/6)[(3/%/3)2Cy + (2V%)(Cyo +2C,;)
—(15"2)pCy, —3(21/2/4)pCyy +7(6Y/2/12) 0 C, ]
+(x,/x)[(3V2/3)Cy + (2/2)vCy, — (154%/3) C,
+(2/2/2)Cy5 = (617/6) Cy

+k[(272/6)C, - (32/2)vC; = (1/6) Gy
—(3'2/9)v"Cy —2(2'2/3)v'Cy, +2(152/9) "' Cy,
+(2172/2) v Cy5 +(6"/2/18)v"C,

+k(1-22) " (22/3) (v = v') Cpp = »(v¥’' = v") Cy ]
+(15'2/9) [(vv'— »")—w(wr" — »')| C,y

+(1/3)v(Cy5 = »Cy) )

—w,Cy +(x,/6)[(6'%/6)Cy +(1/2)Cs — (3/7/6) G4

+ (e, /6)[(6'2/3) G4 — €5 = (32/3) Gy
+k(1=p2) = (6"2/9)[(»0" = »') Cy + (v’ — v") C,]
—(1/3)[(pr" =¥ )Cs+ (vv' = »") (4]

+(329) (v = »") Gy + (vv' = ") G

+(2/9)YCy +(6'2/9)vCy3 — (272/9)¥C4)

—w,Cy +(x,/x)[ = (212/6) C; — (3/%/6) Cs + (1/6) G ]
+(x,/6)[(2Y2)C, = (3/%/3) C, + G
+k(1=92)"H(2V2/9) (v = »') Cy + (w9 = v") C,]
+(3'2/9)[(wr” = »') Cs + (vv' = »") ;]
—(1/9)[(»" =) Cy + (v = ") G

= 2(32%/27)¥Cy - (21/%/9) ¥Cy3 +(61/2/27)vC,, }

527
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0=—wC, +(k,/k)[(677/6)C, — (21/2/6)C, = (1/3) Cyo]
+(x, /6)[(672/3)rCy + (272 )vC, — (1/3) €y = (3172/3)
+ k[(62/9)v'C, — (2V/%/9)v'G, ]
+k(1=v2) = (5/9)v(+C; — C)+(6'/2/18)y(+vCs = C7)
—(212/18)y(»Cs — C5) —5(61/2/2T)(wv' = ") G
+(2/9)(vv" = ") Cyo + (3042/27)(ww' = »") C,
+(1/9) (v’ —v")Ci3 — (37227) (v’ = ") Cyy
+(22/9)7C1s)

0=—wC,+(x,/k)[(6V%/6)vC, — (2'/%/6)rC,
—5(6'2/18) Cy — (30'/2/18) C), +(1/6) Ci5
~(37/18) ¢y
+(x,/6)[(62/3)C, +(2/7) G
+ k[(612/9)p"C, - (21/%/9)v"C, ]
+k(1=v2) = (5/9)7(C; —»Cy)+(6/2/18) y(Cs — vC,)
—(2Y2/18) y(C — vCy ) +5(6'/2/2T)(wv" = v') Cy
+(2/9)(wv' = v") Cy, + (3012/27) (v = ¥') Cyy
—(1/9)(pv" — ") Cy3 + (31227 (vv" —»") Cyy

+(2%2/9)¥C6}
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0=—wCs+(x,/x)[(1/2)C, — (3/%/6)C, — (6'/2/6) Co
+(x,/x)[ =90 = (372/3)vC, = (1/3)G,
~(5"2/3)Cy, = (6'/2/3)Cy3 = (27/3) CyJ]
+k[(1/3)r'C, = (312/9)v'C,
+k(1-»2) " H{(6V%/18)y(vCy — C)
—(1/3)y(#Cs = C3)+ (3V2/9) v (G = Gy)
+(1/9)(vv' —»")Cy + (61%/9)(»¥" = ¥')Cyy
+(542/9) (v = #") Cyy = (612/9) (v2' = »") i
+(2Y2/9) (v’ = ") Ciy +(3'2/9)¥Cis )

0= —wG +(x,/k)[ = (3V%/6)C, +(1/6)C, +(2'/%/6) C,,
+(x, /6)[ = (3%/3)vC, +vC, = (3V%/3) G,
—(1512/3)Cp, — (2/%/3) Cy5 +(67/%/3) C,,]
+ k[ = (32/9)v'C, +(1/9)v'C,]
+k(1—22) = (2Y418)Y(+C; - C,)
+(3V2/9)v(vCs = C3) = (1/9) v (vCs = Gy)
—(37227) (v’ = v") Cy = (21/2/9) (w¥" — »') Cg
—(1512/27)(wv' = »") Cpy +(22/9)(w¥’ = v") Cys

=(62/27)(v»' = »")Cyy — (1/9) Ycls}



530 Clapp et al.

0=—w,Cy+(x,/6)[(1/2)»C, ~(3V%/6)»C, +(1/6)C,
—(512/6)Cy, — (6'/2/6) Cy3 +(2'/°/6) C1
+(x,/6)[ = € = (32/3)C, - (6'/3) Cu]
+k[(1/3)r"C, = (3%/9)"C, ]
+k(1-v2)7H{(6Y2/18)Y(C, —»C,)
~(1/3)y(Cs —vCy)+(3'2/9)v(Gs — vCy)
= (1/9)(r" =) Cy+(6'2/9)(»»' = v") Cyy
+(52/9)(wv" — v')Cy, +(6'2/9)(wv” — ') Cy5
= (22/9) (w0 = 7'} Ciy +(32/9)7Ci}

0= —wCy+(x,/x)[ - (3/2/6)»C, +(1/6)+C,
—(3'%/18) C, + (15*/%/18) C,, + (21/%/6) Cy5
~(6'/18)Cy4]

(k,/%)[ = (32/3)C1+ G = (2/7) €y

+ k[ —(3"2/9)v"C, +(1/9)v"C,]
+k(1=22) = (22/18)y(C, - vC,)
+(32/9)¥(Cs = vCy) = (1/9) (G — vGy)
+(3227)(wv” — v') Cy — (21/2/9) (wv' — »”) Cyy
~(15'2/27)(vp" = v} Cy, — (212/9) (wv" — ¥') Cy5

+(672/27) (" =) Cos = (1/9)7Csa)
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0=—w,Cy+(k,/x)[5(6"*/12)(¥C; = C;)— (1/4)(vCs — C7)
+(32/12) (v Gy — Gg) + (342/6) Cy 4]
+(x, /6) [~ (1/2)(Cs = vCy) = (31/2/2)(C — vCy)]
+ k[ —(1/3)vC, +(3Y2/9)vC, +5(6'/2/18)(»C; = v'C,)
—(1/6)(»"C5 — v'C,) + (3Y%/18) (v Cs — v'Cy)]
+k(1=92) " { = (6"%/9)¥(Cyo + Cpy) +2(54%/9) yvC,
= (3%/9)[(w =) Ci5 + (' = »") Cy] }
0=—wCyo+(k,/k)[—(1/3)C; = (61/%/6)Cs +(21/2/6) C,]
+(k,/x) [~ (62/6)(3vCs — C;)— (21/2/2)(3v G — Gy)]
+ k[ = (1/3)p'Cy — (6Y/2/6)v'Cs + (2/2/6) v’y
+ k(1= = (1/9)[(r" = v) Gy + (v’ = ") C,]
—(612/18)[(»»" = v') Cs + (»' — v"') C4]
+(212/18)[ (v = ) g + (vv' = v") G
+(6'2/27)vCy — (2/3) y»Cyo + (301/%/9) YCy,
+(1/9)yCy3 — (32/27)vCry + (2%/3)(vp' — v") Cy5 )
0=—wCy +(x,/x)[(1/6)(C; —3vC,)
+(612/12)(Cs — 3vC,) — (21/%/12)(Cy — 3vCy)
+(272/2) ]
+(x, /6)[ = (62/3)C, ~ (2/2) 4]
+ k[ = (1/3)v"C, = (6*%/6)v"C, + (24/2/6)v" G
+k(1=22) " = (1/9)[(#r" =) G+ (v»' = »") C,]
—(62/18)[ (v — »") Cs + (ww' = »"') 4]
+(2Y2/18)[(wv” = v") Gy + (vv' = v"") G4
+(6'2/27)vCy +(2/3) yvCy, — (302/9)vCy,
+(1/9)¥Cys — (32/27)vCy — (2V/%/3)(»9" — v') C¢ )
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0=—w,Cy, +(x,/x)[ - (30/2/60)(vC; +3C,)
—(5"2/20)(»C5 +3C, )+ (15%/60) (vC, +3Cy)
+(152/10) C,5]
+(x, /1) [ = (572/10)(3C; + »C;) - (15'2/10)(3C + v Gy )]
+ k[ = (3072/30)(»"Cy + v'Cy) — (5172 /10)(»"'Cs + v'C,)
+(15'2/30)(»"Cy + ¥'Gy)]
+ k(1= 92) "1 = (30'2/45) 0 [(vw" = »")C; + (v0' = v") C,]
—(5'2/15)p[ (w0 = ¥") Cs + (v' = »") ;]
+ (15172745 v [ (00 — ") Gy + (v0' = v") Gy ]
+2(5'2/45)yvCy — (30'2/15)y(Cyo — Cyy)
+(30'2/45) yvC,; — (10'/2/45) ypCy,
= (152/15)[(wr" = »') Cp5 = (' = ") Cy] }

0=—w,C+(x,/k)[—(1/4)(»C, — C,) +(61/%/4)(vCs - C;)
—(2V2/4)(»C - Gy )+ (21/2/4) C 5]
+(x, /)= (1/2)(Cy = #C) = (6'2/2)(Cs — v Cy)
—(2'2/2)(Co — vCy) +(2/2/2) Cy
+ k[~ (672/6)yC, +(2'/2/6)vC, — (1/6)(v"C, — v'C,)
+(6'2/6)(»"Cs — v'Cy) — (22 /6)(»"Cs — v'Cy )]
+ k(1= 92) " = (1/3)7(Cyo + Cu1 ) +(3012/9) y»C,y,

—(21/2/6)[(””"_ VI)CIS + (v’ - ””)Cw] }
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0=—w,Cyy +(x,/0)[(3212)(C, - C,) = (2/7/4)(vCs ~ C;)
+(6Y2/12)(vCy ~ G) ~ (6'/2/12) C 5]
+ (i, /6)[ - (3V2/2)(C; = vCy)~ (22 /2)(Cs — v Cy)
+(62/2)(C, ~ #Cy) +(6"7%/2) Cy¢)
+k[(2172/6)vC, — (6"2/18)yC, + (372 /18)(»"C; ~ v'C,)
~ (212/6)(»"'Cs — v'C, )+ (61/2/18)(»"C, — v'Cy )]
+ k(1= 22)"H{(3V%/9)v(Cyp + 1) — (102/9) yrCyy
+(612/18)[(»p” = »') C5 + (29" = »") Cy4] )
0=—w,Cis+(x,/x)[(3%/6)Cy = (2/%/2)vCg
+(15Y2/6)C, + (21/2/4)C)y — (6"/%/12) C 4]
+(k, /k)[(2Y2/2)pC5 + (612 /2)vC, ]
+ k[~ (212/6)yCy = (3/2/6)vC; + (1/6)vCy
+(3Y2/9)v'Cy —2(2%/3)p"'Cyo + 2(152/9)¥'Cyy
+(2172/6)v'Cyy ~ (6/2/18)'Cy,)
+ k(1= 2~ (22/3) [ (v = ") Clg — (v9" = ") Oy
~(152/9)[w(vv' = v") = (2" =)] C

- (1/3)Y(VC15 - C16)}
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0=—w,Cis+ (1, /x)[(3"2/6)vCy +(21/2/2)(Cyp +2Cy)
—(152/2)vC,, + (21%/4)vCy5 — (61/2/12)vC,|
+(x, /x)[(272/2)Ci3 + (6'7/2) €]
+ k[~ (22/6)7C, = (372/6)¥C +(1/6)7Cy
+(32/9)v"'Cy +2(2/2/3)v'Cy; — 2(15%%/9)v"'C
+(2V%/6)v"Cp3 — (62 /18) 1" Cyy
+k(1=22) " = (223) (" = ¥") Cpo — w(»v' = ") Cy ]
= (15V2/9)[(w' = v") = v (w¥" = ¥")] Cyy

—(1/3)y(Cis — ”Cm)}
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